Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Med Virol ; 95(6): e28831, 2023 06.
Article in English | MEDLINE | ID: covidwho-20239959

ABSTRACT

Despite the higher transmissibility of Omicron Variant of Concern (VOC), several reports have suggested lower risk for hospitalization and severe outcomes compared to previous variants of SARS-CoV-2. This study, enrolling all COVID-19 adults admitted to a reference hospital who underwent both the S-gene-target-failure test and VOC identification by Sanger sequencing, aimed to describe the evolving prevalence of Delta and Omicron variants and to compare the main in-hospital outcomes of severity, during a trimester (December 2021 to March 2022) of VOCs' cocirculation. Factors associated with clinical progression to noninvasive ventilation (NIV)/mechanical ventilation (MV)/death within 10 days and to MV/admission to intensive care unit (ICU)/death within 28 days, were investigated through multivariable logistic regressions. Overall, VOCs were: Delta n = 130/428, Omicron n = 298/428 (sublineages BA.1 n = 275 and BA.2 n = 23). Until mid-February, Delta predominance shifted to BA.1, which was gradually displaced by BA.2 until mid-March. Participants with Omicron VOC were more likely to be older, fully vaccinated, with multiple comorbidities and to have a shorter time from symptoms' onset, and less likely to have systemic symptoms and respiratory complications. Although the need of NIV within 10 days and MV within 28 days from hospitalization and the admission to ICU were less frequent for patients with Omicron compared to those with Delta infections, mortality was similar between the two VOCs. In the adjusted analysis, multiple comorbidities and a longer time from symptoms' onset predicted 10-day clinical progression, while complete vaccination halved the risk. Multimorbidity was the only risk factor associated with 28-day clinical progression. In our population, in the first trimester of 2022, Omicron rapidly displaced Delta in COVID-19 hospitalized adults. Clinical profile and presentation differed between the two VOCs and, although Omicron infections showed a less severe clinical picture, no substantial differences for clinical progression were found. This finding suggests that any hospitalization, especially in more vulnerable individuals, may be at risk for severe progression, which is more related to the underlying frailty of patients than to the intrinsic severity of the viral variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Hospitals , Disease Progression
2.
Diagnostics (Basel) ; 13(9)2023 Apr 27.
Article in English | MEDLINE | ID: covidwho-2319493

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is characterized by fast evolution with the appearance of several variants. Next-Generation Sequencing (NGS) technology is considered the gold standard for monitoring known and new SARS-CoV-2 variants. However, the complexity of this technology renders this approach impracticable in laboratories located in areas with limited resources. We analyzed the capability of the ThermoFisher TaqPath COVID-19 RT-PCR (TaqPath) and the Seegene Novaplex SARS-CoV-2 Variant assay (Novaplex) to detect Omicron variants; the Allplex VariantII (Allplex) was also evaluated for Delta variants. Sanger sequencing (SaS) was the reference method. The results obtained with n = 355 nasopharyngeal samples were: negative with TaqPath, although positive with other qualitative molecular assays (n = 35); undetermined (n = 40) with both the assays; negative for the ∆69/70 mutation and confirmed as the Delta variant via SaS (n = 100); positive for ∆69/70 and confirmed as Omicron BA.1 via SaS (n = 80); negative for ∆69/70 and typed as Omicron BA.2 via SaS (n = 80). Novaplex typed 27.5% of samples as undetermined with TaqPath, 11.4% of samples as negative with TaqPath, and confirmed 100% of samples were Omicron subtypes. In total, 99/100 samples were confirmed as the Delta variant with Allplex with a positive per cent agreement (PPA) of 98% compared to SaS. As undermined samples with Novaplex showed RdRp median Ct values (Ct = 35.4) statistically higher than those of typed samples (median Ct value = 22.0; p < 0.0001, Mann-Whitney test), the inability to establish SARS-CoV-2 variants was probably linked to the low viral load. No amplification was obtained with SaS among all 35 negative TaqPath samples. Overall, 20% of samples which were typed as negative or undetermined with TaqPath, and among them, twelve were not typed even by SaS, but they were instead correctly identified with Novaplex. Although full-genome sequencing remains the elected method to characterize new strains, our data show the high ability of a SNP-based assay to identify VOCs, also resolving samples typed as undetermined with TaqPath.

3.
Int J Infect Dis ; 122: 401-404, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1907181

ABSTRACT

OBJECTIVES: Considering the spread of new genetic variants and their impact on public health, it is important to have assays that are able to rapidly detect SARS-CoV-2 variants. METHODS: We retrospectively examined 118 positive nasopharyngeal swabs, first characterized by the Sanger sequencing, using the Simplexa® SARS-CoV-2 Variants Direct assay, with the aim of evaluating the performance of the assay to detect N501Y, G496S, Q498R, Y505H, E484K, E484Q, E484A, and L452R mutations. RESULTS: A total of 111/118 nasopharyngeal swabs were in complete agreement with the Sanger sequencing, whereas the remaining seven samples were not amplified due to the low viral load. The evaluation of the ability of the assay to detect the E484Q mutation was performed using a viral isolate of the SARS-CoV-2 Kappa variant, showing concordance in 15/15 samples. Simplexa® SARS-CoV-2 Variant Direct assay was able to detect mutation pattern of Alpha, Beta, Gamma, Delta, and Omicron variants with 100% specificity and 94% sensitivity, whereas 100% sensitivity and specificity for the Kappa variant was observed. CONCLUSION: The assay can be useful to obtain faster results, contributing to a prompt surveillance of SARS-CoV-2 variants; however, it requires to be confirmed by the Sanger method, especially in the case of pattern of mutations that are different from those expected and also requires updates as new variants emerge.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Mutation , RNA, Viral/genetics , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL